Functions Question 251

Question: Let $ f(x)= \begin{cases} 0, & x<0 \\ x^{2}, & x\ge 0 \\ \end{cases} $ , then for all values of $ x $

[IIT 1984; MP PET 2002]

Options:

A) f is continuous but not differentiable

B) f is differentiable but not continuous

C) $ {f}’ $ is continuous but not differentiable

D) $ {f}’ $ is continuous and differentiable

Show Answer

Answer:

Correct Answer: C

Solution:

$ f(x)= \begin{cases} \ 0, & x<0 \\ x^{2}, & x\ge 0 \\ \end{cases} . $ ; $ \underset{x\to {0^{-}}}{\mathop{\lim }} f(x)=\underset{h\to 0}{\mathop{\lim }} f(0-h)=0 $ and $ \underset{x\to {0^{+}}}{\mathop{\lim }} f(x)=\underset{h\to 0}{\mathop{\lim }} f(0+h)=\underset{h\to 0}{\mathop{\lim }} {{(0+h)}^{2}}=0 $

$ \underset{x\to {0^{-}}}{\mathop{\lim }} f(x)=\underset{x\to {0^{+}}}{\mathop{\lim }} f(x)=f(0) $

Hence $ f(x) $ is continuous function at $ x=0 $ .

 $ L {f}'(x)=\underset{x\to {0^{-}}}{\mathop{\lim }} \frac{f(x)-f(0)}{x-0}=\underset{h\to 0}{\mathop{\lim }} \frac{f(0-h)-0}{-h}=\underset{h\to 0}{\mathop{\lim }} \frac{0-0}{-h}=0 $              

$ R{f}’(x)=\underset{x\to {0^{+}}}{\mathop{\lim }} \frac{f(x)-f(0)}{x-0} $

 $ =\underset{h\to 0}{\mathop{\lim }} \frac{f(0+h)-f(0)}{h}=\underset{h\to 0}{\mathop{\lim }} \frac{{{(0+h)}^{2}}-0}{h}=0 $             

$ L{f}’(x)=R{f}’(x) $

Hence $ f(x) $ is differentiable at $ x=0 $ .

Now $ {f}’(x)= \begin{cases} 0, & x<0 \\ 2x, & x\ge 0 \\ \end{cases} . $ ;

$ \underset{x\to {0^{-}}}{\mathop{\lim }} {f}’(x)=\underset{h\to 0}{\mathop{\lim }} {f}’(0-h)=0 $ and $ \underset{x\to {0^{+}}}{\mathop{\lim }} {f}’(x)=\underset{h\to 0}{\mathop{\lim }} {f}’(0+h)=\underset{h\to 0}{\mathop{\lim }} 2(0+h)=0 $

$ \underset{x\to {0^{-}}}{\mathop{\lim }} {f}’(x)=\underset{x\to {0^{+}}}{\mathop{\lim }} {f}’(x)=0 $

Hence $ {f}’(x) $ is continuous function at $ x=0 $ .

 Now  $ L {f}''(x)=\underset{x\to {0^{-}}}{\mathop{\lim }} \frac{f(x)-f(0)}{x-0} $  

$ =\underset{h\to 0}{\mathop{\lim }} \frac{f(0-h)-f(0)}{-h} $ $ =\underset{h\to 0}{\mathop{\lim }} \frac{0-0}{-h}=0 $ $ R {f}’’(x)=\underset{x\to {0^{+}}}{\mathop{\lim }} \frac{f(x)-f(0)}{x-0} $

$ =\underset{h\to 0}{\mathop{\lim }} \frac{f(0+h)-f(0)}{h} $

$ =\underset{h\to 0}{\mathop{\lim }} \frac{2(0+h)-0}{h} $

$ =\underset{h\to 0}{\mathop{\lim }} \frac{2h}{h}=2 $ $ L{f}’’(x)\ne R{f}’’(x) $ Hence $ {f}’(x) $ is not differentiable at $ x=0 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें