Functions Question 252
Question: If $ f(x)= \begin{cases} & x\sin \frac{1}{x},x\ne 0 \\ & k,x=0 \\ \end{cases} . $ is continuous at $ x=0 $ , then the value of k is
[MP PET 1999; AMU 1999; RPET 2003]
Options:
A) 1
B) ?1
C) 0
D) 2
Show Answer
Answer:
Correct Answer: C
Solution:
If function  $ f(x) $  is continuous at  $ x=0, $  then                     $ f(0)=\underset{x\to 0}{\mathop{\lim }}f(x) $                     Given  $ f(0)=k $ ;   $ f(0)=k=\underset{x\to 0}{\mathop{\lim }}x,( \sin \frac{1}{x} ) $              $ f(0)=k=0,\text{  }( -1\le \sin \frac{1}{x}\le 1 ) $ ;
$ \therefore ,k=0 $ ..
 BETA
  BETA 
             
             
           
           
           
          