Functions Question 259
Question: $ \underset{x\to \infty }{\mathop{\lim }},\frac{\log x^{n}-
[x]}{[x]},,n\in N,, $ $ ,(,[x] $ denotes greatest integer less than or equal to x) [AIEEE 2002]
Options:
A) Has value ?1
B) Has value 0
C) Has value 1
D) Does not exist
Show Answer
Answer:
Correct Answer: A
Solution:
$ \underset{x\to \infty }{\mathop{\lim }},\frac{\log x^{n}-[x]}{[x]}=\underset{x\to \infty }{\mathop{\lim }},\frac{\log x^{n}}{[x]}-\underset{x\to \infty }{\mathop{\lim }},\frac{[x]}{[x]} $ $ =0-1=-1. $