Functions Question 259

Question: $ \underset{x\to \infty }{\mathop{\lim }},\frac{\log x^{n}-

[x]}{[x]},,n\in N,, $ $ ,(,[x] $ denotes greatest integer less than or equal to x) [AIEEE 2002]

Options:

A) Has value ?1

B) Has value 0

C) Has value 1

D) Does not exist

Show Answer

Answer:

Correct Answer: A

Solution:

$ \underset{x\to \infty }{\mathop{\lim }},\frac{\log x^{n}-[x]}{[x]}=\underset{x\to \infty }{\mathop{\lim }},\frac{\log x^{n}}{[x]}-\underset{x\to \infty }{\mathop{\lim }},\frac{[x]}{[x]} $ $ =0-1=-1. $