Functions Question 266

Question: $ \underset{x\to 0}{\mathop{\lim }},\frac{a^{x}-b^{x}}{e^{x}-1} $ =

[Kerala (Engg.) 2002]

Options:

A) $ \log ( \frac{a}{b} ) $

B) $ \log ( \frac{b}{a} ) $

C) $ \log (a,b) $

D) $ \log ,(a+,b) $

Show Answer

Answer:

Correct Answer: A

Solution:

$ \underset{x\to 0}{\mathop{\lim }},\frac{a^{x}-b^{x}}{e^{x}-1}=\underset{x\to 0}{\mathop{\lim }},\frac{a^{x}-b^{x}}{x}.\frac{x}{e^{x}-1} $ $ =\underset{x\to 0}{\mathop{\lim }},[ \frac{a^{x}-1}{x}-\frac{b^{x}-1}{x} ]\frac{x}{e^{x}-1} $ $ =({\log_{e}}a-{\log_{e}}b).\frac{1}{{\log_{e}}e} $ $ ={\log_{e}}( \frac{a}{b} ) $ Trick : Apply L-Hospital?s rule.