Functions Question 267

If $ f(x)= \begin{cases} & ,\frac{\sin x}{x}

[x]}{[x]+1},for,x>0 \\ & \frac{\cos \frac{\pi }{2}[x]}{[x]},for,x<0 \\ & k,at,x=0 \\ \end{cases} . $ ; where [x] denotes the greatest integer less than or equal to x, then in order that f be continuous at $ x=0 $ , the value of k is [Kurukshetra CEE 1998]

Options:

A) Equal to 0

B) Equal to 1

C) Equal to 1

D) Indeterminate

Show Answer

Answer:

Correct Answer: A

Solution:

If f is continuous at $ \underset{x\to {0^{+}}}{\mathop{\lim }},{f}’(x)=\underset{h\to 0}{\mathop{\lim }},{f}’(0+h)=\underset{h\to 0}{\mathop{\lim }},2(0+h)=0 $ , then $ \underset{x\to {0^{-}}}{\mathop{\lim }},f(x)=\underset{x\to {0^{+}}}{\mathop{\lim }},f(x)=f(0) $
$ \Rightarrow ,f(0)=,\underset{x\to {0^{-}}}{\mathop{\lim }},f(x) $ $ k=\underset{h\to 0}{\mathop{\lim }},f(0-h)=\underset{h\to 0}{\mathop{\lim }}\frac{\cos \frac{\pi }{2},[0-h]}{[0-h]} $ $ k=\underset{h\to 0}{\mathop{\lim }}\frac{\cos \frac{\pi }{2},[-h]}{[-h]}=\underset{h\to 0}{\mathop{\lim }}\frac{\cos \frac{\pi }{2},[-h]}{[-h]} $ $ k=\underset{h\to 0}{\mathop{\lim }}\frac{\cos ,( -\frac{\pi }{2} )}{-1} $ ; $ k=0 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें