Functions Question 270

Question: $ \underset{x\to -2}{\mathop{\lim }},\frac{{{\sin }^{-1}}(x+2)}{x^{2}+2x} $ is equal to

[Orissa JEE 2002]

Options:

A) 0

B) $ \infty $

C) ?1/2

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ y=\underset{x\to -2}{\mathop{\lim }},\frac{{{\sin }^{-1}}(x+2)}{x^{2}+2x} $ , $ ( \frac{0}{0}form ) $ Using L-Hospital?s rule
Þ $ y=\underset{x\to -2}{\mathop{\lim }},\frac{( \frac{1}{\sqrt{1-{{(x+2)}^{2}}}} )}{2x+2} $ Þ $ y=\frac{1}{-4+2}=-\frac{1}{2} $ .