Functions Question 277
Question: Given that $ f’ $ (2)=6 and $ {f}’(1)=4)= $ , then $ \underset{h\to 0}{\mathop{\lim }},\frac{f(2h+2+h^{2})-f(2)}{f(h-h^{2}+1)-f(1)}= $
[IIT Screening 2003]
Options:
A) Does not exist
B) Is equal to ? 3/2
C) Is equal to 3/2
D) Is equal to 3
Show Answer
Answer:
Correct Answer: D
Solution:
$ \underset{h\to 0}{\mathop{\lim }},\frac{f(2h+2+h^{2})-f(2)}{f(h-h^{2}+1)-f(1)}=\underset{h\to 0}{\mathop{\lim }},\frac{{f}’(2h+2+h^{2})(2+2h)}{{f}’(h-h^{2}+1)(1-2h)} $ $ =\frac{6\times 2}{4\times 1}=3 $ .