Functions Question 277

Question: Given that $ f’ $ (2)=6 and $ {f}’(1)=4)= $ , then $ \underset{h\to 0}{\mathop{\lim }},\frac{f(2h+2+h^{2})-f(2)}{f(h-h^{2}+1)-f(1)}= $

[IIT Screening 2003]

Options:

A) Does not exist

B) Is equal to ? 3/2

C) Is equal to 3/2

D) Is equal to 3

Show Answer

Answer:

Correct Answer: D

Solution:

$ \underset{h\to 0}{\mathop{\lim }},\frac{f(2h+2+h^{2})-f(2)}{f(h-h^{2}+1)-f(1)}=\underset{h\to 0}{\mathop{\lim }},\frac{{f}’(2h+2+h^{2})(2+2h)}{{f}’(h-h^{2}+1)(1-2h)} $ $ =\frac{6\times 2}{4\times 1}=3 $ .