Functions Question 279

Question: The $ \underset{x\to 0}{\mathop{\lim }},{{(\cos x)}^{\cot x}} $ is

[RPET 1999]

Options:

A) -1

B) 0

C) 1

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ y=\underset{x\to 0}{\mathop{\lim }},{{(\cos x)}^{\cot x}} $
Taking log on both sides,

Þ $ \log y=\underset{x\to 0}{\mathop{\lim }},\cot x\log \cos x $

Þ $ \log y=\underset{x\to 0}{\mathop{\lim }},\frac{\log \cos x}{\tan x} $ , $ ( \frac{0}{0}form ) $
Applying L-Hospital?s rule,

Þ $ \log y=\underset{x\to 0}{\mathop{\lim }},\frac{-\tan x}{{{\sec }^{2}}x} $ = 0

Þ $ y=e^{0} $
Þ $ y=1 $ .