Functions Question 289

$ \underset{x\to 0}{\mathop{\lim }}, f(x)$

[ \frac{e^{x}-{e^{\sin x}}}{x-\sin x} ] $ is equal to [UPSEAT 2004]

Options:

?1

0

1

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ \underset{x\to 0}{\mathop{\lim }},[ \frac{e^{x}-{e^{\sin x}}}{x-\sin x} ] $ , $ ( \frac{0}{0}form ) $ Using L-Hospital’s rule three times, then $ \underset{x\to 0}{\mathop{\lim }},\frac{e^{x}-{e^{\sin x}}\cos x}{1-\cos x}=\underset{x\to 0}{\mathop{\lim }},\frac{e^{x}-{e^{\sin x}}{{\cos }^{2}}x+\sin x.{e^{\sin x}}}{\sin x} $ $ =\underset{x\to 0}{\mathop{\lim }},\frac{e^{x}-{e^{\sin x}}.{{\cos }^{3}}x+{e^{\sin x}}2\cos x\sin x+{e^{\sin x}}.\cos x\sin x+{e^{\sin x}}.\cos x}{\cos x} $ $ =1 $ .



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index