Functions Question 289
$ \underset{x\to 0}{\mathop{\lim }}, f(x)$
[ \frac{e^{x}-{e^{\sin x}}}{x-\sin x} ] $ is equal to [UPSEAT 2004]
Options:
?1
0
1
D) None of these
Show Answer
Answer:
Correct Answer: C
Solution:
$ \underset{x\to 0}{\mathop{\lim }},[ \frac{e^{x}-{e^{\sin x}}}{x-\sin x} ] $ , $ ( \frac{0}{0}form ) $ Using L-Hospital’s rule three times, then $ \underset{x\to 0}{\mathop{\lim }},\frac{e^{x}-{e^{\sin x}}\cos x}{1-\cos x}=\underset{x\to 0}{\mathop{\lim }},\frac{e^{x}-{e^{\sin x}}{{\cos }^{2}}x+\sin x.{e^{\sin x}}}{\sin x} $ $ =\underset{x\to 0}{\mathop{\lim }},\frac{e^{x}-{e^{\sin x}}.{{\cos }^{3}}x+{e^{\sin x}}2\cos x\sin x+{e^{\sin x}}.\cos x\sin x+{e^{\sin x}}.\cos x}{\cos x} $ $ =1 $ .
 BETA
  BETA 
             
             
           
           
           
          