Functions Question 289

Question: $ \underset{x\to 0}{\mathop{\lim }},

[ \frac{e^{x}-{e^{\sin x}}}{x-\sin x} ] $ is equal to [UPSEAT 2004]

Options:

A) ?1

B) 0

C) 1

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ \underset{x\to 0}{\mathop{\lim }},[ \frac{e^{x}-{e^{\sin x}}}{x-\sin x} ] $ , $ ( \frac{0}{0}form ) $ Using L-Hospital?s rule three times, then $ \underset{x\to 0}{\mathop{\lim }},\frac{e^{x}-{e^{\sin x}}.\cos x}{1-\cos x}=\underset{x\to 0}{\mathop{\lim }},\frac{e^{x}-{e^{\sin x}}{{\cos }^{2}}x+\sin x.{e^{\sin x}}}{\sin x} $ $ =\underset{x\to 0}{\mathop{\lim }},\frac{e^{x}-{e^{\sin x}}.{{\cos }^{3}}x+{e^{\sin x}}2\cos x\sin x+{e^{\sin x}}.\cos x\sin x+{e^{\sin x}}.\cos x}{\cos x} $ $ =1 $ .