Functions Question 291

Question: The value of $ \underset{x\to -1}{\mathop{\lim }},\frac{x^{2}+3x+2}{x^{2}+4x+3} $ is equal to

[Pb. CET 2000]

Options:

A) 0

B) 1

C) 2

D) ½

Show Answer

Answer:

Correct Answer: D

Solution:

$ \underset{x\to 1}{\mathop{\lim }},\frac{x^{2}+3x+2}{x^{2}+4x+3}=\underset{x\to -1}{\mathop{\lim }},\frac{x^{2}+2x+x+2}{x^{2}+3x+x+3} $ $ =\underset{x\to -1}{\mathop{\lim }},\frac{(x+1)(x+2)}{(x+1)(x+3)}=\underset{x\to -1}{\mathop{\lim }},\frac{x+2}{x+3}=\frac{1}{2} $ .