Functions Question 294

Question: The value of $ \underset{x\to \infty }{\mathop{\lim }},{{( \frac{3x-4}{3x+2} )}^{\frac{x+1}{3}}} $ is equal to

[Pb. CET 2004]

Options:

A) $ {e^{-1/3}} $

B) $ {e^{-2/3}} $

C) $ {e^{-1}} $

D) $ {e^{-2}} $

Show Answer

Answer:

Correct Answer: B

Solution:

$ \underset{x\to \infty }{\mathop{\lim }},{{( \frac{3x-4}{3x+2} )}^{\frac{x+1}{3}}}=\underset{x\to \infty }{\mathop{\lim }},{{( \frac{3x+2-6}{3x+2} )}^{\frac{x+1}{3}}} $ $ =\underset{x\to \infty }{\mathop{\lim }},{{( 1-\frac{6}{3x+2} )}^{\frac{x+1}{3}}}=\underset{x\to \infty }{\mathop{\lim }},{{[ {{( 1-\frac{6}{3x+2} )}^{\frac{3x+2}{-6}}} ]}^{\frac{-6}{3x+2}.\frac{x+1}{3}}} $ $ =\underset{x\to \infty }{\mathop{\lim }},{e^{\frac{-2(x+1)}{3x+2}}}={e^{-2/3}} $ , $ { \because \underset{x\to \infty }{\mathop{\lim }},\frac{-2(x+1)}{3x+2}=\frac{-2}{3} } $ .