Functions Question 295

Question: The value of $ \underset{x\to \infty }{\mathop{\lim }},\frac{(x+1)(3x+4)}{x^{2}(x-8)} $ is equal to

[Pb. CET 2002]

Options:

A) 2

B) 3

C) 1

D) 0

Show Answer

Answer:

Correct Answer: D

Solution:

$ \underset{x\to \infty }{\mathop{\lim }},\frac{(x+1)(3x+4)}{x^{2}(x-8)}=\underset{x\to \infty }{\mathop{\lim }},[ \frac{x( 1+\frac{1}{x} ),x,( 3+\frac{4}{x} )}{x^{3}( 1-\frac{8}{x} )} ] $ $ =\underset{x\to \infty }{\mathop{\lim }},[ \frac{1}{x}\frac{( 1+\frac{1}{x} ),( 3+\frac{4}{x} )}{( 1-\frac{8}{x} )} ]=0 $ .