Functions Question 297

If $ f(x)= \begin{cases} & \frac{\sin x}{x}

[x]}{[x]},\text{ when }[x]\ne 0 \\ & ,0,\text{ when }[x]=0 \\ \end{cases} . $ where [x] is greatest integer function, then $ \underset{x\to 0}{\mathop{\lim }},f(x)= $ [IIT 1985; RPET 1995]

Options:

?1

1

0

D) None of these

Show Answer

Answer:

Correct Answer: D

Solution:

In closed interval of x = 0 at right hand side [x] = 0 and at left hand side $ [x]=-1. $ Also [0]=0. Therefore function is defined as $ f(x)= \begin{cases} & \frac{\sin ,[x]}{[x]}(-1\le x<0) \\ & \ \ \ \ \ 0\ \ (0\le x<1) \\ \end{cases} . $ \Left hand limit $ =\underset{x\to 0-}{\mathop{\lim }},f(x)=\underset{x\to 0-}{\mathop{\lim }}\frac{\sin ,[x]}{[x]} $ $ =\frac{\sin ,(-1)}{-1}=\sin 1 $ Right hand limit = 0. Hence limit doesn’t exist.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें