Functions Question 300

Question: The value of $ \underset{x\to 0}{\mathop{\lim }},\frac{\log

[1+x^{3}]}{{{\sin }^{3}}x}= $ [AMU 2005]

Options:

A) 0

B) 1

C) 3

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ \underset{x\to 0}{\mathop{\lim }},\frac{\log (1+x^{3})}{{{\sin }^{3}}x} $ $ =\underset{x\to 0}{\mathop{\lim }},\frac{3x^{2}/(1+x^{3})}{3{{\sin }^{2}}x\cos x} $ [By using L- Hospital rule] $ =\underset{x\to 0}{\mathop{\lim }},[ \frac{1}{1+x^{3}}{{( \frac{x}{\sin x} )}^{2}}.\frac{1}{\cos x} ] $ $ =\frac{1}{1+0}.{{(1)}^{2}}.\frac{1}{1}=1 $ .