Functions Question 305

Question: The function $ f(x)=x^{2}\sin \frac{1}{x},,x\ne ,0,f(0),=0 $ at $ x=0 $

[MP PET 2003]

Options:

A) Is continuous but not differentiable

B) Is discontinuous

C) Is having continuous derivative

D) Is continuous and differentiable

Show Answer

Answer:

Correct Answer: D

Solution:

$ \underset{x\to 0}{\mathop{\lim }},f(x)=x^{2}\sin ( \frac{1}{x} ) $ , but $ -1\le \sin ( \frac{1}{x} )\le 1 $ and $ x\to 0 $ \ $ \underset{x\to {0^{+}}}{\mathop{\lim }},f(x)=0=\underset{x\to {0^{-}}}{\mathop{\lim }},f(x)=f(0) $ Therefore $ f(x) $ is continuous at $ x=0 $ . Also, the function $ f(x)=x^{2}\sin \frac{1}{x} $ is differentiable because $ R{f}’(x)=\underset{h\to 0}{\mathop{\lim }},\frac{h^{2}\sin \frac{1}{h}-0}{h}=0 $ , $ L{f}’(x)=\underset{h\to 0}{\mathop{\lim }},\frac{h^{2}\sin (1/-h)}{-h}=0 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें