Functions Question 307

Question: The value of the constant $ \alpha $ and $ \beta $ such that $ \underset{x\to \infty }{\mathop{\lim }},( \frac{x^{2}+1}{x+1}-\alpha x-\beta )=0 $ are respectively

[Orissa JEE 2005]

Options:

A) (1, 1)

B) (?1, 1)

C) (1, ?1)

D) (0, 1)

Show Answer

Answer:

Correct Answer: C

Solution:

$ \underset{x\to \infty }{\mathop{\lim }},( \frac{x^{2}+1}{x+1}-2x-\beta )=0 $
Þ $ \underset{x\to \infty }{\mathop{\lim }},\frac{x^{2}(1-\alpha )-x(\alpha +\beta )+1-b}{x+1}=0 $ Since the limit of the given expression is zero, therefore degree of the polynomial in numerator must be less than denominator. \ $ 1-\alpha =0 $ and $ \alpha +\beta =0 $
Þ $ \alpha =1 $ and $ \beta =-1 $ .