Functions Question 308

Question: Let $ f:R\to R $ be a differentiable function having $ f(2)=6,f’(2)=( \frac{1}{48} ). $ Then $ \underset{x\to 2}{\mathop{\lim }},\int\limits_6^{f(x)}{\frac{4t^{3}}{x-2}} $ dt equals

[AIEEE 2005]

Options:

A) 12

B) 18

C) 24

D) 36

Show Answer

Answer:

Correct Answer: B

Solution:

$ \underset{x\to 2}{\mathop{\lim }},\frac{\int\limits_6^{f(x)}{4t^{3}dt}}{x-2}(0/0,form)=\underset{x\to 2}{\mathop{\lim }},\frac{4{{(f(x))}^{3}}\times f’(x)}{1} $ $ =4{{(f(2))}^{3}}\times f’(2)=18 $ .