Functions Question 314

Question: If $ S_{n}=\sum\limits_{k=1}^{n}{a_{k}} $ and $ \underset{n\to \infty }{\mathop{\lim }},a_{n}=a, $ then $ \underset{n\to \infty }{\mathop{\lim }},\frac{{S_{n+1}}-S_{n}}{\sqrt{\sum\limits_{k=1}^{n}{k}}} $ is equal to

Options:

A) 0

B) a

C) $ \sqrt{2}a $

D) $ 2a $

Show Answer

Answer:

Correct Answer: A

Solution:

We have $ \underset{n\to \infty }{\mathop{\lim }}\frac{{S_{n+1}}-S_{n}}{\sqrt{\sum\limits_{k=1}^{n}{k}}}=\underset{n\to \infty }{\mathop{\lim }}\frac{{a_{n+1}}}{\sqrt{\frac{n,(n+1)}{2}}}=0 $ (Since $ n\to \infty ,,\text{numerator }\to a\text{ while}\text{denominator }\to \infty \text{)} $