Functions Question 317

Question: $ \underset{n\to \infty }{\mathop{\lim }},\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+…+\frac{1}{2^{n}} $ equals

[RPET 1996]

Options:

A) 2

B) ?1

C) 1

D) 3

Show Answer

Answer:

Correct Answer: C

Solution:

$ y=\underset{n\to \infty }{\mathop{\lim }}\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+…….+\frac{1}{2^{n}}=\underset{n\to \infty }{\mathop{\lim }},\frac{1}{2},\frac{[ 1-{{( \frac{1}{2} )}^{n}} ]}{( 1-\frac{1}{2} )} $ $ \underset{n\to \infty }{\mathop{\lim }}[ 1-\frac{1}{2^{n}} ]=1-0=1 $