Functions Question 319

Question: If $ f(x),= \begin{cases} \frac{x-1}{2x^{2}-7x+5} & \text{for }x\ne 1 \\ -\frac{1}{3} & \text{for }x=1 \\ \end{cases}, . $ then $ f’(1)= $

[EAMCET 2003]

Options:

A) ?1/9

B) ?2/9

C) ?1/3

D) 1/3

Show Answer

Answer:

Correct Answer: B

Solution:

By definition, $ {f}’(1)=\underset{h\to 0}{\mathop{\lim }},\frac{f(1+h)-f(1)}{h} $ $ =\underset{h\to 0}{\mathop{\lim }},\frac{\frac{1}{2(1+h)-5}-( \frac{-1}{3} )}{h}=\underset{h\to 0}{\mathop{\lim }},\frac{( \frac{1}{2h-3}+\frac{1}{3} )}{h} $ $ =\underset{h\to 0}{\mathop{\lim }},( \frac{3+2h-3}{3h(2h-3)} )=\underset{h\to 0}{\mathop{\lim }},( \frac{2h}{3h(2h-3)} ) $ $ =\underset{h\to 0}{\mathop{\lim }},\frac{2}{3(2h-3)}=\frac{2}{3(-3)}=\frac{-2}{9} $ .