Functions Question 32

Question: If $ f(x)=|x-3|, $ then f is

[SCRA 1996; RPET 1997]

Options:

A) Discontinuous at $ x=2 $

B) Not differentiable $ x=2 $

C) Differentiable at $ x=3 $

D) Continuous but not differentiable at $ x=3 $

Show Answer

Answer:

Correct Answer: D

Solution:

$ \underset{x\to {3^{-}}}{\mathop{\lim }}f(x)=\underset{h\to 0}{\mathop{\lim }},f(3-h)=\underset{h\to 0}{\mathop{\lim }},|3-h-3|=0 $ $ \underset{x\to {3^{+}}}{\mathop{\lim }}f(x)=\underset{h\to 0}{\mathop{\lim }},f(3+h)=\underset{h\to 0}{\mathop{\lim }},|3+h-3|=0 $ $ \because \underset{x\to {3^{-}}}{\mathop{\lim }}f(x)=\underset{x\to {3^{+}}}{\mathop{\lim }},f(x)=f(3) $ Hence f is continuous at $ x=3 $ Now $ L,{f}’(3)=\underset{h\to 0}{\mathop{\lim }},\frac{f(3-h)-f(3)}{-h} $ $ =\underset{h\to 0}{\mathop{\lim }},\frac{|3-h-3|-0}{-h}=\underset{h\to 0}{\mathop{\lim }}\frac{h}{-h}=-1 $ $ R,{f}’(3)=\underset{h\to 0}{\mathop{\lim }},\frac{f(3+h)-f(3)}{h} $ $ =\underset{h\to 0}{\mathop{\lim }},\frac{|3+h-3|-0}{h}=1 $ $ \because L,{f}’(3),\ne ,R,{f}’(3) $ . Hence f is not differentiable at $ x=3 $ . Trick : Can be seen by graph it is continuous but tangent is not defined at $ x=3 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें