Functions Question 320

Question: $ \underset{n\to \infty }{\mathop{\lim }},{ \frac{1}{n^{2}}+\frac{2}{n^{2}}+\frac{3}{n^{2}}+……+\frac{n}{n^{2}} } $ is

[SCRA 1996]

Options:

A) ½

B) 0

C) 1

D) $ \infty $

Show Answer

Answer:

Correct Answer: A

Solution:

$ \underset{n\to \infty }{\mathop{\lim }}( \frac{1}{n^{2}}+\frac{2}{n^{2}}+\frac{3}{n^{2}}+…….+\frac{n}{n^{2}} ) $ $ =\underset{n\to \infty }{\mathop{\lim }},( \frac{1+2+3+……+n}{n^{2}} )=\underset{n\to \infty }{\mathop{\lim }}\frac{\frac{n}{2}(n+1)}{n^{2}} $ $ =\frac{1}{2}\underset{n\to \infty }{\mathop{\lim }},\frac{n+1}{n}=\frac{1}{2}\underset{n\to \infty }{\mathop{\lim }},1+\frac{1}{n}=\frac{1}{2} $