Functions Question 325

Question: $ \underset{x\to \infty }{\mathop{\lim }},\frac{{{(x+1)}^{10}}+{{(x+2)}^{10}}+…..+{{(x+100)}^{10}}}{x^{10}+10^{10}} $ is equal to

Options:

A) 0

B) 1

C) 10

D) 100

Show Answer

Answer:

Correct Answer: D

Solution:

$ \underset{x\to \infty }{\mathop{\lim }},\frac{{{(x+1)}^{10}}+{{(x+2)}^{10}}+……+{{(x+100)}^{10}}}{x^{10}+10^{10}} $ $ =\underset{x\to \infty }{\mathop{\lim }},\frac{x^{10}[ {{( 1+\frac{1}{x} )}^{10}}+{{( 1+\frac{2}{x} )}^{10}}+…+{{( 1+\frac{100}{x} )}^{10}} ]}{x^{10}[ 1+\frac{10^{10}}{x^{10}} ]}=100 $ .