Functions Question 327
Question: If $ f(x)=\frac{x^{2}-10x+25}{x^{2}-7x+10} $ for $ x $ $ \ne , $ 5 and f is continuous at $ x=5, $ then $ f(5)= $
[EAMCET 2001]
Options:
A) 0
B) 5
C) 10
D) 25
Show Answer
Answer:
Correct Answer: A
Solution:
$ f(5)=\underset{x\to 5}{\mathop{lim}},f(x) $ $ =\underset{x\to 5}{\mathop{lim}},\frac{x^{2}-10x+25}{x^{2}-7x+10} $ $ =\underset{x\to 5}{\mathop{lim}},\frac{{{(x-5)}^{2}}}{(x-2)(x-5)}=\frac{5-5}{5-2}=0 $ .