Functions Question 328

Question: The value of $ \underset{x\to 0}{\mathop{\lim }},\frac{\int_0^{x}{\cos t^{2}}}{x},dt $ is

Options:

A) 0

B) 1

C) $ -1 $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ \underset{x\to 0}{\mathop{\lim }},\frac{\int_0^{x}{\cos t^{2}dt}}{x} $ Applying L- Hospital rule, we get $ \underset{x\to 0}{\mathop{\lim }},\frac{\int_0^{x}{\cos t^{2}dt}}{x}=\underset{x\to 0}{\mathop{\lim }},\frac{\cos x^{2}}{1}=1 $ .