Functions Question 328
Question: The value of $ \underset{x\to 0}{\mathop{\lim }},\frac{\int_0^{x}{\cos t^{2}}}{x},dt $ is
Options:
A) 0
B) 1
C) $ -1 $
D) None of these
Show Answer
Answer:
Correct Answer: B
Solution:
$ \underset{x\to 0}{\mathop{\lim }},\frac{\int_0^{x}{\cos t^{2}dt}}{x} $ Applying L- Hospital rule, we get $ \underset{x\to 0}{\mathop{\lim }},\frac{\int_0^{x}{\cos t^{2}dt}}{x}=\underset{x\to 0}{\mathop{\lim }},\frac{\cos x^{2}}{1}=1 $ .