Functions Question 328
The value of $ \underset{x\to 0}{\mathop{\lim }},\frac{\int_0^{x}{\cos \left( t^{2} \right)}}{x},dt $ is
Options:
0
1
C) $ -1 $
D) None of these
Show Answer
Answer:
Correct Answer: B
Solution:
$ \underset{x\to 0}{\mathop{\lim }},\frac{\int_0^{x}{\cos t^{2}dt}}{x} $ Applying L- Hospital rule, we get $ \underset{x\to 0}{\mathop{\lim }},\frac{\int_0^{x}{\cos t^{2}dt}}{x}=\underset{x\to 0}{\mathop{\lim }},\frac{\cos \left( x^{2} \right)}{1}=1 $ .
 BETA
  BETA 
             
             
           
           
           
          