Functions Question 329
Question: If $ f(x),=\frac{x}{1+|x|} $ for $ x\in R, $ then $ f’(0)= $
[EAMCET 2003]
Options:
0
1
2
3
Show Answer
Answer:
Correct Answer: B
Solution:
Let                                                                                    $ x<0\Rightarrow |x|=-x $
Þ                                                   $ f(x)=\frac{d}{dx}( \frac{x}{1-x} )=\frac{1}{{{(1-x)}^{2}}} $                  
Þ                                                                                       $ {{[{f}’(x)]}{x=0}}=1 $  . Again                                                                                                    $ x>0 $
Þ                                                                                                $ |x|,=,x $                         $ f(x)=\frac{d}{dx}( \frac{x}{1+x} )=\frac{1}{{{(1+x)}^{2}}}\Rightarrow {{[f’(x)]}{x=0}}=1 $
Þ                                                                                                $ {f}’(0)=1 $  .
 BETA
  BETA 
             
             
           
           
           
          