Functions Question 33

Question: $ \underset{x\to 0}{\mathop{\lim }}\frac{\tan 2x-x}{3x-\sin x}= $

[IIT 1971]

Options:

A) 0

B) 1

C) ½

D) 1/3

Show Answer

Answer:

Correct Answer: C

Solution:

$ \underset{x\to 0}{\mathop{\lim }}\frac{\tan 2x-x}{3x-\sin x}=\underset{x\to 0}{\mathop{\lim }}{ \frac{\frac{2\tan 2x}{2x}-1}{3-\frac{\sin x}{x}} }=\frac{1}{2}. $ Aliter : Apply L-Hospital?s rule $ \underset{x\to 0}{\mathop{\lim }}\frac{\tan 2x-x}{3x-\sin x}=\underset{x\to 0}{\mathop{\lim }}\frac{2{{\sec }^{2}}2x-1}{3-\cos x}=\frac{2-1}{3-1}=\frac{1}{2}. $