Functions Question 330

Question: If f is strictly increasing function, then $ \underset{x\to 0}{\mathop{\lim }},\frac{f(x^{2})-f(x)}{f(x)-f(0)} $ is equal to

[IIT Screening 2004]

Options:

A) 0

B) 1

C) -1

D) 2

Show Answer

Answer:

Correct Answer: C

Solution:

$ \underset{x\to 0}{\mathop{\lim }},\frac{f(x^{2})-f(x)}{f(x)-f(0)} $ , $ ( \frac{0}{0}form ) $
$ =\underset{x\to 0}{\mathop{\lim }},\frac{2xf’(x^{2})-f’(x)}{f’(x)} $ , (using L’ Hospital’s rule)
$ =-1+\underset{x\to 0}{\mathop{\lim }},\frac{2xf’(x^{2})}{f’(x)}=-1,f’(0)\ne 0,, $
as f is strictly increasing.