Functions Question 334

Question: The function $ f(x)={{

[x]}^{2}}-[x^{2}] $ , (where [y] is the greatest integer less than or equal to y),is discontinuous at [IIT 1999]

Options:

A) All integers

B) All integers except 0 and 1

C) All integers except 0

D) All integers except 1

Show Answer

Answer:

Correct Answer: D

Solution:

Given $ f(x)={{[x]}^{2}}-[x^{2}] $
$ -1<x<0,f(x)={{(-1)}^{2}}-0=1 $
$ x=0,f(x)=0^{2}-0=0 $
$ 0<x<1,f(x)=0^{2}-0=0 $
$ x=1,f(x)=1^{2}-1=0 $
$ 1<x<\sqrt{2},f(x)=1^{2}-1=0 $
$ x=\sqrt{2},f(x)=1^{2}-2=-1 $
$ \sqrt{2}<x<\sqrt{3},f(x)=1^{2}-2=-1 $
$ x=\sqrt{3},f(x)=1^{2}-3=-2 $
$ \sqrt{3}<x<2,f(x)=1^{2}-3=-2 $
$ x=2,f(x)=4-4=0 $ ; $ 2<x<\sqrt{5},f(x)=4-4=0 $
$ x=\sqrt{5},f(x)=4-5=-1 $
Hence function is discontinuous at all integers except 1.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें