Functions Question 335

Question: If $ f(x)=\frac{x}{\sqrt{1+x^{2}}} $ , then $ (fofof)(x)= $

[RPET 2000]

Options:

A) $ \frac{3x}{\sqrt{1+x^{2}}} $

B) $ \frac{x}{\sqrt{1+3x^{2}}} $

C) $ \frac{3x}{\sqrt{1+x^{2}}} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ (fofof),(x)=(fof),(f(x))=(fof),( \frac{x}{\sqrt{1+x^{2}}} ) $ $ =f,[ \frac{( \frac{x}{\sqrt{1+x^{2}}} )}{\sqrt{1+\frac{x^{2}}{1+x^{2}}}} ]=f,( \frac{x\sqrt{1+x^{2}}}{\sqrt{1+x^{2}}\sqrt{1+2x^{2}}} ) $ $ =f,( \frac{x}{\sqrt{1+2x^{2}}} )=\frac{\frac{x}{\sqrt{1+2x^{2}}}}{\sqrt{[ 1+\frac{x^{2}}{1+2x^{2}} ]}}=\frac{x}{\sqrt{1+3x^{2}}}. $