Functions Question 338

Question: The function $ f(x)=\frac{{{\sec }^{-1}}x}{\sqrt{x-[x]}}, $ where [.] denotes the greatest integer less than or equal to x is defined for all x belonging to

Options:

A) R

B) $ R-{(-1,\ 1)\cup (n|n\in Z)} $

C) $ {R^{+}}-(0,\ 1) $

D) $ {R^{+}}-{n|n\in N} $

Show Answer

Answer:

Correct Answer: B

Solution:

The function $ {{\sec }^{-1}}x $ is defined for all $ x\in R-(-1,1) $ and the function $ \frac{1}{\sqrt{x-[x]}} $ is defined for all $ x\in R-Z. $ So the given function is defined for all $ x\in R-{(-1,1)\cup (n|n\in Z)}. $