Functions Question 339

Question: If $ f(x)=,|x| $ , then $ f(x) $ is

[DCE 2002]

Options:

A) Continuous for all x

B) Differentiable at $ x=0 $

C) Neither continuous nor differentiable at $ x=0 $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

It is obvious that $ |x| $ is continuous for all x. Now, $ R{f}’(x)=\underset{h\to 0}{\mathop{\lim }},\frac{|0+h|-0}{h}=1 $ $ L{f}’(x)=\underset{h\to 0}{\mathop{\lim }},\frac{|0-h|-0}{-h}=-1 $ Hence $ f(x)=,|x| $ is not differentiable at $ x=0 $ .