Functions Question 34

Question: $ \underset{x\to 0}{\mathop{\lim }},\frac{x}{|x|+x^{2}}= $

Options:

A) 1

B) ?1

C) 0

D) Does not exist

Show Answer

Answer:

Correct Answer: D

Solution:

$ \underset{x\to 0-}{\mathop{\lim }},f(x)=\underset{h\to 0}{\mathop{\lim }},\frac{0-h}{h+h^{2}}=\underset{h\to 0}{\mathop{\lim }}\frac{-1}{1+h}=-1 $ and $ \underset{x\to 0+}{\mathop{\lim }},f(x)=\underset{h\to 0}{\mathop{\lim }},\frac{h}{h+h^{2}}=\underset{h\to 0}{\mathop{\lim }}\frac{1}{1+h}=1 $ Hence limit does not exist.