Functions Question 345

Question: If f is a real- valued differentiable function satisfying $ |f(x)-f(y)|\le {{(x-y)}^{2}},x,y\in R $ and $ f(0)=0 $ , then $ f(1) $ equal

[AIEEE 2005]

Options:

A) 2

B) 1

C) ?1

D) 0

Show Answer

Answer:

Correct Answer: D

Solution:

$ \underset{x\to y}{\mathop{\lim }},| \frac{f(x)-f(y)}{x-y} |\le \underset{x\to y}{\mathop{\lim }},|x-y|or|f’(x)|\le 0 $
$ \Rightarrow f’(x)=0\Rightarrow f(x) $ is constant, As $ f(0)=0 $ \ $ f(1)=0 $ .