Functions Question 346
Question: Let $ g(x)=x.f(x), $ where $ f(x)= \begin{cases} & x\sin \frac{1}{x},x\ne 0 \\ & 0,x=0 \\ \end{cases} $ at $ x=0 $
[IIT Screening 1994; UPSEAT 2004]
Options:
A) g is differentiable but g’ is not continuous.
B) Both g and f are not differentiable.
C) Both f and g are differentiable.
D) g is differentiable and g’ is continuous.
Show Answer
Answer:
Correct Answer: A
Solution:
$ f(x)= \begin{cases}    x\sin \frac{1}{x}, & x\ne 0  \\    0, & x=0  \\ \end{cases}  . $ ,  $ g(x)= \begin{cases}    x^{2}\sin \frac{1}{x}, & x\ne 0  \\    0, & x=0  \\ \end{cases}  . $         
$ L{f}’(0)=\underset{h\to 0}{\mathop{\lim }}\frac{f(0-h)-f(0)}{-h} $                 
$ =\underset{h\to 0}{\mathop{\lim }}\frac{(0-h)\sin (-\frac{1}{h})-(0)}{-h}=\underset{h\to 0}{\mathop{\lim }}-\sin ( \frac{1}{h} ) $
= a quantity which lies between ? 1 and 1        
$ R{f}’(0)=\underset{h\to 0}{\mathop{\lim }}\frac{f(0+h)-f(0)}{h} $                 
$ =\underset{h\to 0}{\mathop{\lim }}\frac{(0+h)\sin \frac{1}{h}-0}{h}=\underset{h\to 0}{\mathop{\lim }}\sin \frac{1}{h} $                 
= a quantity which lies between ? 1 and 1        
Hence  $ L{f}’(0)\ne R{f}’(0) $   \ $ f(x) $  is not differentiable at  $ x=0 $         
Now  $ L{g}’(0)=\underset{h\to 0}{\mathop{\lim }}\frac{f(0-h)-f(0)}{0-h} $         
$ L{g}’(0)=\underset{h\to 0}{\mathop{\lim }}\frac{{{(0-h)}^{2}}\sin (-\frac{1}{h})-0}{-h}=\underset{h\to 0}{\mathop{\lim }}h\sin ( \frac{1}{h} ) $         
$ L{g}’(0)=0\times ( -1\le \sin \frac{1}{h}\le 1 ) $
Þ  $ L{g}’(0)=0 $         
and  $ R{g}’(0)=\underset{h\to 0}{\mathop{\lim }}\frac{f(0+h)-f(0)}{h}=\underset{h\to 0}{\mathop{\lim }}\frac{{{(0+h)}^{2}}\sin ( \frac{1}{h} )-0}{h} $                      
$ =\underset{h\to 0}{\mathop{\lim }}h\sin ( \frac{1}{h} )=0\times ( -1\le \sin ( \frac{1}{h} )\le 1 )=0 $         
$ \because L{g}’(0)=R{g}’(0) $  then  $ g(x) $  is differentiable at  $ x=0 $         
Now  $ g(x)=x^{2}\sin \frac{1}{x} $   $ {g}’(x)=2x\sin \frac{1}{x}+x^{2}\cos \frac{1}{x}\times -\frac{1}{x^{2}} $         
$ {g}’(x)=2x\sin \frac{1}{x}-\cos \frac{1}{x} $
Þ  $ {g}’(x)=2f(x)-\cos \frac{1}{x} $         
So,  $ {g}’(x) $  is not differentiable at  $ x=0 $ .
 BETA
  BETA 
             
             
           
           
           
          