Functions Question 346

Question: Let $ g(x)=x.f(x), $ where $ f(x)= \begin{cases} & x\sin \frac{1}{x},x\ne 0 \\ & 0,x=0 \\ \end{cases} $ at $ x=0 $

[IIT Screening 1994; UPSEAT 2004]

Options:

A) g is differentiable but g’ is not continuous.

B) Both g and f are not differentiable.

C) Both f and g are differentiable.

D) g is differentiable and g’ is continuous.

Show Answer

Answer:

Correct Answer: A

Solution:

$ f(x)= \begin{cases} x\sin \frac{1}{x}, & x\ne 0 \\ 0, & x=0 \\ \end{cases} . $ , $ g(x)= \begin{cases} x^{2}\sin \frac{1}{x}, & x\ne 0 \\ 0, & x=0 \\ \end{cases} . $
$ L{f}’(0)=\underset{h\to 0}{\mathop{\lim }}\frac{f(0-h)-f(0)}{-h} $
$ =\underset{h\to 0}{\mathop{\lim }}\frac{(0-h)\sin (-\frac{1}{h})-(0)}{-h}=\underset{h\to 0}{\mathop{\lim }}-\sin ( \frac{1}{h} ) $ = a quantity which lies between ? 1 and 1
$ R{f}’(0)=\underset{h\to 0}{\mathop{\lim }}\frac{f(0+h)-f(0)}{h} $
$ =\underset{h\to 0}{\mathop{\lim }}\frac{(0+h)\sin \frac{1}{h}-0}{h}=\underset{h\to 0}{\mathop{\lim }}\sin \frac{1}{h} $
= a quantity which lies between ? 1 and 1
Hence $ L{f}’(0)\ne R{f}’(0) $ \ $ f(x) $ is not differentiable at $ x=0 $
Now $ L{g}’(0)=\underset{h\to 0}{\mathop{\lim }}\frac{f(0-h)-f(0)}{0-h} $
$ L{g}’(0)=\underset{h\to 0}{\mathop{\lim }}\frac{{{(0-h)}^{2}}\sin (-\frac{1}{h})-0}{-h}=\underset{h\to 0}{\mathop{\lim }}h\sin ( \frac{1}{h} ) $
$ L{g}’(0)=0\times ( -1\le \sin \frac{1}{h}\le 1 ) $
Þ $ L{g}’(0)=0 $
and $ R{g}’(0)=\underset{h\to 0}{\mathop{\lim }}\frac{f(0+h)-f(0)}{h}=\underset{h\to 0}{\mathop{\lim }}\frac{{{(0+h)}^{2}}\sin ( \frac{1}{h} )-0}{h} $
$ =\underset{h\to 0}{\mathop{\lim }}h\sin ( \frac{1}{h} )=0\times ( -1\le \sin ( \frac{1}{h} )\le 1 )=0 $
$ \because L{g}’(0)=R{g}’(0) $ then $ g(x) $ is differentiable at $ x=0 $
Now $ g(x)=x^{2}\sin \frac{1}{x} $ $ {g}’(x)=2x\sin \frac{1}{x}+x^{2}\cos \frac{1}{x}\times -\frac{1}{x^{2}} $
$ {g}’(x)=2x\sin \frac{1}{x}-\cos \frac{1}{x} $
Þ $ {g}’(x)=2f(x)-\cos \frac{1}{x} $
So, $ {g}’(x) $ is not differentiable at $ x=0 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें