Functions Question 35
Question: Mapping $ f:R\to R $ which is defined as $ f(x)=\cos x,\ x\in R $ will be
[UPSEAT 1999]
Options:
A) Neither one-one nor onto
B) One-one
C) Onto
D) One-one onto
Show Answer
Answer:
Correct Answer: A
Solution:
Let  $ x_1,,x_2\in R, $  then  $ f(x_1)=\cos x_1 $ ,  $ f(x_2)=\cos x_2 $ , so  $ f(x_1)=f(x_2) $          
Þ  $ \cos x_1=\cos x_2 $
Þ  $ x_1=2n\pi \pm x_2 $          
Þ  $ x_1\ne x_2 $ , so it is not one-one.            Again the value of f-image of x lies in between ?1 to 1         
Þ  $ f[R]={ f(x):-1\le f(x)\le 1) } $             So other numbers of co-domain (besides ?1 and 1) is not f-image.  $ f[R]\in R, $  so it is also not onto. So this mapping is neither one-one nor onto.
 BETA
  BETA 
             
             
           
           
           
          