Functions Question 355

Question: A relation R is defined over the set of nonnegative integers as $ xRy\Rightarrow x^{2}+y^{2}=36 $ what is R?

Options:

A) $ {(0,6)} $

B) $ {(6,0)(\sqrt{11},5),(3,3,\sqrt{3}) $

C) $ {(6,0)(0,6)} $

D) $ (\sqrt{11},5),(2,4\sqrt{2}),(5\sqrt{11}),(4\sqrt{2}2)} $

Show Answer

Answer:

Correct Answer: C

Solution:

[b] R is defined over the set of non-negative integers, $ x^{2}+y^{2}=36 $
$ \Rightarrow y=\sqrt{36-x^{2}}=\sqrt{(6-x)(6+x)},x=0 $ or 6 for x = 0, y = 6 and for x = 6, y = 0 So, y is 6 or 0 so, $ R={(6,0),(0,6)} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें