Functions Question 357

Question: If $ \varphi (x)=x^{2}+1 $ and $ \psi (x)=3^{x} $ , then $ \varphi {\psi (x)} $ and $ \psi {\varphi (x)}= $

Options:

A) $ {3^{2x+1}},\ {3^{x^{2}+1}} $

B) $ {3^{2x+1}},\ {3^{x^{2}}}+1 $

C) $ 3^{2x}+1,\ {3^{x^{2}+1}} $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ \varphi ,{ \psi ,(x), }=\varphi ,(3^{x})={{(3^{x})}^{2}}+1=3^{2x}+1 $ and $ \psi ,{ \varphi ,(x), }=\psi ,(x^{2}+1)={3^{x^{2}+1}} $ .