Functions Question 357
Question: If $ \varphi (x)=x^{2}+1 $ and $ \psi (x)=3^{x} $ , then $ \varphi {\psi (x)} $ and $ \psi {\varphi (x)}= $
Options:
A) $ {3^{2x+1}},\ {3^{x^{2}+1}} $
B) $ {3^{2x+1}},\ {3^{x^{2}}}+1 $
C) $ 3^{2x}+1,\ {3^{x^{2}+1}} $
D) None of these
Show Answer
Answer:
Correct Answer: C
Solution:
$ \varphi ,{ \psi ,(x), }=\varphi ,(3^{x})={{(3^{x})}^{2}}+1=3^{2x}+1 $ and $ \psi ,{ \varphi ,(x), }=\psi ,(x^{2}+1)={3^{x^{2}+1}} $ .