Functions Question 366

Question: A relation R is defined in the set Z of integers as follows $ (x,y)\in R $ iff $ x^{2}+y^{2}=9. $ Which of the following is false?

Options:

A) $ R={(0,3),(0,-3),(3,0),(-3,0)} $

B) Domain of $ R={-3,0,3} $

C) Range of $ R={-3,0,3} $

D) None of these

Show Answer

Answer:

Correct Answer: D

Solution:

[d] $ x^{2}+y^{2}=9\Rightarrow y^{2}=9-x^{2} $

$ \Rightarrow y=\pm \sqrt{9-x^{2}} $ $ x=0\Rightarrow y=\pm \sqrt{9-0}=\pm 3\in Z $ $ x=\pm 1\Rightarrow y=\pm \sqrt{9-1}=\pm \sqrt{8}\notin Z $ $ x=\pm 2\Rightarrow y=\pm \sqrt{9-4}=\pm \sqrt{5}\notin Z $ $ x=\pm 3\Rightarrow y=\pm \sqrt{9-9}=0\in Z $ $ x=\pm 4\Rightarrow y=\pm \sqrt{9-16}=\pm \sqrt{-7}\notin Z $ And so on,

$ \therefore R={(0,3),(0,-3),(3,0),(-3,0)} $ Domain of $ R={x:(x,y)\in R}={0,3,-3} $ Range of $ R={y:(x,y)\in R}={3,-3,0}. $