Functions Question 369

Question: If $ f(x),=\frac{2-\sqrt{x+4}}{\sin 2x},(x\ne 0), $ is continuous function at $ x=0 $ , then $ f(0) $ equals

[MP PET 2002]

Options:

A) $ \frac{1}{4} $

B) $ -\frac{1}{4} $

C) $ \frac{1}{8} $

D) $ -\frac{1}{8} $

Show Answer

Answer:

Correct Answer: D

Solution:

If $ f(x) $ is continuous at $ x=0, $ then $ f(0),=,\underset{x\to 0}{\mathop{\lim }},f(x) $ $ =\underset{x\to 0}{\mathop{\lim }},\frac{2-\sqrt{x+4}}{\sin 2x} $ , $ ( \frac{0}{0},form ) $ Using L?Hospital?s rule, $ f(0)=\underset{x\to 0}{\mathop{\lim }},\frac{( -\frac{1}{2\sqrt{x+4}} )}{2\cos 2x}=-\frac{1}{8} $ .