Functions Question 371

Question: The range of the function $ f(x)=x^{2}+2x+2 $ is

Options:

A) $ (1,\infty ) $

B) $ (2,\infty ) $

C) $ (0,\infty ) $

D) $ [1,\infty ) $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] Let $ f(x)=y=x^{2}+2x+2={{(x+1)}^{2}}+1 $ $ y-1={{(x+1)}^{2}}\Rightarrow x+1=\sqrt{y-1} $ $ x=\sqrt{y-1}-1 $ Since, $ y-1\ge 0\therefore y\ge 1 $
$ \therefore $ range is $ [ 1,\infty ) $ .