Functions Question 374
Question: The domain of $ f(x)=\frac{1}{\sqrt{2x-1}}-\sqrt{1-x^{2}} $ is:
Options:
A) $ ] \frac{1}{2},1 [ $
B) $ [ -1,\infty [ $
C) $ [ 1,\infty [ $
D) None of these
Show Answer
Answer:
Correct Answer: A
Solution:
[a] Given,  $ f(x)=\frac{1}{\sqrt{2x-1}}-\sqrt{1-x^{2}}=p(x)-q(x) $  Where  $ p(x)=\frac{1}{\sqrt{2x-1}} $  and  $ q(x)=\sqrt{1-x^{2}} $  Now, Domain of  $ p(x) $  exist when  $ 2x-1\ne 0 $
$ \Rightarrow x=\frac{1}{2} $  And  $ 2x-1>0 $
$ \Rightarrow x=\frac{1}{2} $  And  $ x>\frac{1}{2}\therefore x\in ( \frac{1}{2},\infty  ) $  And domain of q(x) exists when  $ 1-x^{2}\ge 0 $
$ \Rightarrow x^{2}\le 1\Rightarrow | x |\le 1\therefore -1\le x\le 1 $
$ \therefore  $  Common domain is $ ] \frac{1}{2},1 [ $
 BETA
  BETA 
             
             
           
           
           
          