Functions Question 388

Question: If $ f(x)=\frac{2^{x}+{2^{-x}}}{2} $ , then $ f(x+y).f(x-y) $ is equal to

Options:

A) $ \frac{1}{2}[f(x+y)+f(x-y)] $

B) $ \frac{1}{2}[f(2x)+f(2y)] $

C) $ \frac{1}{2}[f(x+y).f(x-y)] $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

[b] $ f(x+y).f(x-y) $ $ =\frac{{2^{x+y}}+{2^{-x-y}}}{2}.\frac{{2^{x-y}}+{2^{-x+y}}}{2} $ $ =\frac{2^{2x}+2^{2y}+{2^{-2x}}+{2^{-2y}}}{2\times 2} $ $ =\frac{1}{2}[ \frac{2^{2x}+{2^{-2x}}}{2}+\frac{2^{2y}+{2^{-2y}}}{2} ] $ $ =\frac{1}{2}[f(2x)+f(2y)] $