Functions Question 389

Question: If $ f(x+1)=x^{2}-3x+2, $ then $ f(x) $ is equal to:

Options:

A) $ x^{2}-5x-6 $

B) $ x^{2}+5x-6 $

C) $ x^{2}+5x+6 $

D) $ x^{2}-5x+6 $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] Given function is: $ f(x+1)=x^{2}-3x+2 $ This function is valid for all real values of x. so, putting x - 1 in place. Of x, we get $ f(x)=f(x-1+1)\Rightarrow f(x)={{(x-1)}^{2}}-3(x-1)+2 $
$ \Rightarrow f(x)=x^{2}-2x+1-3x+3+2 $
$ \Rightarrow f(x)=x^{2}-5x+6 $