Functions Question 402
Question: Let $ f_1(x)= \begin{cases} x,0\le x\le 1 \\ 1,x>1 \\ 0,otherwise \\ \end{cases} . $
$ f_2(x)=f_1(-x) $ for all x $ f_3(x)=-f_2(x) $ for all x $ f_4(x)=f_3(-x) $ for all x Which of the following is necessarily true?
Options:
A) $ f_4(x)=f_1(x) $ for all x
B) $ f_1(x)=-f_3(-x) $ for all x
C) $ f_2(-x)=f_4(x) $ for all x
D) $ f_1(x)+f_3(x)=0 $ for all x
Show Answer
Answer:
Correct Answer: B
Solution:
[b]