Functions Question 406

If $\mathrm{f}(\mathrm{x})$ is a differentiable function such that $\mathrm{f} : R \rightarrow R$ and $f\left(\frac{1}{n}\right)=0 \forall n \geq 1, n \in \mathbb{N}$, then

[IIT Screening 2005]

Options:

A) $ f(x)=0\ \forall \ x\in (0, 1) $

B) $f(0)=0=f^{\prime}(0)$

C) $ f(0)=0 $ but $ f’(0) $ may or may not be 0

D) $ |f(x)| \le 1\ \forall \ x\in (0, 1) $

Show Answer

Answer:

Correct Answer: B

Solution:

$ f(1)=f( \frac{1}{2} )=f( \frac{1}{3} )=……=\underset{n\to \infty }{\mathop{\lim }} f( \frac{1}{n} )=0 $ Since there are infinitely many points in $ x\in (0, 1) $ where $ f(x)=0 $ and $ \underset{n\to \infty }{\mathop{\lim }} f( \frac{1}{n} )=0 $
Þ $ f(0)=0 $ And since there are infinitely many points in the neighbourhood of $ x=0 $ such that
Þ $ f(x) $ remains constant in the neighbourhood of $ x=0 $ is not necessarily true; it depends on the specific function $ f(x) $. Þ $ f’(0)=0 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें