Functions Question 418
Question: The domain of $ F(x)=\frac{{\log_2}(x+3)}{x^{2}+3x+2} $ is
Options:
A) $ R-{-1,-2} $
B) $ (-2,\infty ) $
C) $ R-{-1,-2-3} $
D) $ (-3,\infty )-{-1,-2} $
Show Answer
Answer:
Correct Answer: D
Solution:
[d] We have ,  $ F(x)=\frac{{\log_2}(x+3)}{x^{2}+3x+2} $
$ \therefore F(x) $  is defined if  $ x+3>0 $  and  $ x^{2}+3x+2\ne 0 $
$ \Rightarrow F(x) $  is defined if  $ x>-3 $  and  $ x\ne -1,-2 $
$ \Rightarrow  $  Domain of  $ F(x)=(-3,\infty )-{-1,-2} $
 BETA
  BETA 
             
             
           
           
           
          