Functions Question 418

Question: The domain of $ F(x)=\frac{{\log_2}(x+3)}{x^{2}+3x+2} $ is

Options:

A) $ R-{-1,-2} $

B) $ (-2,\infty ) $

C) $ R-{-1,-2-3} $

D) $ (-3,\infty )-{-1,-2} $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] We have , $ F(x)=\frac{{\log_2}(x+3)}{x^{2}+3x+2} $
$ \therefore F(x) $ is defined if $ x+3>0 $ and $ x^{2}+3x+2\ne 0 $
$ \Rightarrow F(x) $ is defined if $ x>-3 $ and $ x\ne -1,-2 $
$ \Rightarrow $ Domain of $ F(x)=(-3,\infty )-{-1,-2} $