Functions Question 42
Question: If $ f(x)= \begin{cases} \frac{2}{5-x}, & \text{when }x<3 \\ 5-x, & \text{when }x>3 \\ \end{cases} $ , then
Options:
A) $\lim _{x \rightarrow 3^+} f(x)=0$
B) $\lim _{x \rightarrow 3^-} f(x)=0$
C) $\lim _{x \rightarrow 3^+} f(x) \neq \lim _{x \rightarrow 3^-} f(x)$
D) None of these
Show Answer
Answer:
Correct Answer: C
Solution:
$ \underset{x\to 3+}{\mathop{\lim }}f(x)=5-3=2,\underset{x\to 3-}{\mathop{\lim }}f(x)=\frac{2}{5-3}=1. $