Functions Question 42

Question: If $ f(x)= \begin{cases} \frac{2}{5-x}, & \text{when }x<3 \\ 5-x, & \text{when }x>3 \\ \end{cases} $ , then

Options:

A) $\lim _{x \rightarrow 3^+} f(x)=0$

B) $\lim _{x \rightarrow 3^-} f(x)=0$

C) $\lim _{x \rightarrow 3^+} f(x) \neq \lim _{x \rightarrow 3^-} f(x)$

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ \underset{x\to 3+}{\mathop{\lim }}f(x)=5-3=2,\underset{x\to 3-}{\mathop{\lim }}f(x)=\frac{2}{5-3}=1. $