Functions Question 423

Question: Suppose that $ g(x)=1+\sqrt{x} $ and $ f(g(x))=3+2\sqrt{x}+x $ , then $ f(x) $ is

[MP PET 2000; Karnataka CET 2002]

Options:

A) $ 1+2x^{2} $

B) $ 2+x^{2} $

C) $ 1+x $

D) $ 2+x $

Show Answer

Answer:

Correct Answer: B

Solution:

$ g(x)=1+\sqrt{x} $ and $ f(g(x))=3+2\sqrt{x}+x $ …..(i)
Þ $ f(1+\sqrt{x})=3+2\sqrt{x}+x $ Put $ 1+\sqrt{x}=y $
Þ $ x={{(y-1)}^{2}} $ then, $ f(y)=3+2(y-1)+{{(y-1)}^{2}} $ $ =2+y^{2} $ therefore, $ f(x)=2+x^{2} $ .