Functions Question 426

Question: If $ f(x)=\frac{1}{\sqrt{(x+1)(e^{x}-1)(x-4)(x+5)(x-6)}} $ Then the domain of f(x) is

Options:

A) $ (-\infty ,-5)\cup (-1,4)\cup (6,\infty ) $

B) $ (-\infty ,-5)\cup (-1,0)\cup (0,4)\cup (6,\infty ) $

C) $ (-5,-1)\cup (0,4)\cup (6,\infty ) $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

[c] $ f(x)=\frac{1}{\sqrt{(x+1)(e^{x}-1)(x-4)(x+5)(x-6)}} $ $ f(x) $ is defined is $ (x+1)(e^{x}-1)(x-4)(x+5)(x-8) $ >0 Hence, $ x\in (-5,-1)\cup (0,4)\cup (6,\infty ) $