Functions Question 426
Question: If $ f(x)=\frac{1}{\sqrt{(x+1)(e^{x}-1)(x-4)(x+5)(x-6)}} $ Then the domain of f(x) is
Options:
A) $ (-\infty ,-5)\cup (-1,4)\cup (6,\infty ) $
B) $ (-\infty ,-5)\cup (-1,0)\cup (0,4)\cup (6,\infty ) $
C) $ (-5,-1)\cup (0,4)\cup (6,\infty ) $
D) None of these
Show Answer
Answer:
Correct Answer: C
Solution:
[c] $ f(x)=\frac{1}{\sqrt{(x+1)(e^{x}-1)(x-4)(x+5)(x-6)}} $ $ f(x) $ is defined is $ (x+1)(e^{x}-1)(x-4)(x+5)(x-8) $ >0 Hence, $ x\in (-5,-1)\cup (0,4)\cup (6,\infty ) $